Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression

نویسندگان

  • Hyun-Ji Kim
  • Myong-Ho Jeong
  • Kyung-Ran Kim
  • Chang-Yun Jung
  • Seul-Yi Lee
  • Hanna Kim
  • Jewoo Koh
  • Tuan Anh Vuong
  • Seungmoon Jung
  • Hyunwoo Yang
  • Su-Kyung Park
  • Dahee Choi
  • Sung Hun Kim
  • KyeongJin Kang
  • Jong-Woo Sohn
  • Joo Min Park
  • Daejong Jeon
  • Seung-Hoi Koo
  • Won-Kyung Ho
  • Jong-Sun Kang
  • Seong-Tae Kim
  • Hana Cho
چکیده

KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca(2+)/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1+/- mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/- neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Change in Configuration of the Calmodulin-KCNQ Channel Complex Underlies Ca2+-Dependent Modulation of KCNQ Channel Activity

All subtypes of KCNQ channel subunits (KCNQ1-5) require calmodulin as a co-factor for functional channels. It has been demonstrated that calmodulin plays a critical role in KCNQ channel trafficking as well as calcium-mediated current modulation. However, how calcium-bound calmodulin suppresses the M-current is not well understood. In this study, we investigated the molecular mechanism of KCNQ2 ...

متن کامل

Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epileps...

متن کامل

Regulation of KCNQ2/KCNQ3 Current by G Protein Cycling

Receptor-mediated modulation of KCNQ channels regulates neuronal excitability. This study concerns the kinetics and mechanism of M1 muscarinic receptor-mediated regulation of the cloned neuronal M channel, KCNQ2/KCNQ3 (Kv7.2/Kv7.3). Receptors, channels, various mutated G-protein subunits, and an optical probe for phosphatidylinositol 4,5-bisphosphate (PIP2) were coexpressed by transfection in t...

متن کامل

PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels

Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation. To elucidate how the retigabine binding site is coupled to changes in voltage sensing, we used voltage-clamp ...

متن کامل

Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance.

Pressor effects of the vasoconstrictor hormone arginine vasopressin (AVP), observed when systemic AVP concentrations are less than 100 pM, are important for the physiological maintenance of blood pressure, and they are also the basis for therapeutic use of vasopressin to restore blood pressure in hypotensive patients. However, the mechanisms by which circulating AVP induces arterial constrictio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016